
Page 1/19

Sex differences in viral entry protein expression,
host responses to SARS-CoV-2, and in vitro
responses to sex steroid hormone treatment in
COVID-19
Mengying Sun 

Michigan State University
Rama Shankar 

Michigan State University
Meehyun Ko 

Institut Pasteur Korea
Christopher Daniel Chang 

Michigan State University
Shan-Ju Yeh 

Michigan State University
Shilong Li 

Sema4
Ke Liu 

Michigan State University
Guoli Zhou 

Michigan State University
Jing Xing 

Michigan State University
Austin VanVelsen 

Michigan State University
Tyler VanVelsen 

Michigan State University
Shreya Paithankar 

Michigan State University
Benjamin Y. Feng 

Michigan State University
Krista Young 

Michigan State University
Michael Strug 

Michigan State University

https://doi.org/10.21203/rs.3.rs-100914/v1


Page 2/19

Lauren Turco 
Spectrum Health

Zichen Wang 
Sema4

Eric Schadt 
Sema4

Rong Chen 
Sema4

Xiaohong Li 
Van Andel Research Institute

Tomiko Oskotsky 
University of California

Marina Sirota 
University of California

Benjamin S. Glicksberg 
Icahn School of Medicine at Mount Sinai

Girish N. Nadkarni 
Icahn School of Medicine at Mount Sinai

Adam J. Moeser 
Michigan State University

Li Li 
Sema4

Seungtaek Kim 
Institut Pasteur Korea

Jiayu Zhou 
Michigan State University

Bin Chen  (  chenbi12@msu.edu )
Michigan State University

Research Article

Keywords: sex difference, COVID-19

DOI: https://doi.org/10.21203/rs.3.rs-100914/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

mailto:chenbi12@msu.edu
https://doi.org/10.21203/rs.3.rs-100914/v1
https://creativecommons.org/licenses/by/4.0/


Page 3/19

Abstract
Epidemiological studies suggest that men exhibit a higher mortality rate to COVID-19 than women, yet the
underlying biology is largely unknown. Here, we seek to delineate sex differences in the expression of
entry genes ACE2 and TMPRSS2, host responses to SARS-CoV-2, and in vitro responses to sex steroid
hormone treatment.  Using over 220,000 human gene expression pro�les covering a wide range of age,
tissues, and diseases, we found that male samples show higher expression levels of ACE2 and TMPRSS2,
especially in the older group (>60 years) and in the kidney. Analysis of 6,031 COVID-19 patients at Mount
Sinai Health System revealed that men have signi�cantly higher creatinine levels, an indicator of impaired
kidney function.  Further analysis of 782 COVID-19 patient gene expression pro�les taken from upper
airway and blood suggested men and women present profound expression differences in responses to
SARS-CoV-2. Computational deconvolution analysis of these pro�les revealed male COVID-19 patients
have enriched kidney-speci�c mesangial cells in blood compared to healthy patients. Finally, we observed
selective estrogen receptor modulators, but not other hormone drugs (agonists/antagonists of estrogen,
androgen, and progesterone), could reduce SARS-CoV-2 infection in vitro.

Main Text
A growing body of epidemiological evidence suggests that men exhibit a higher mortality rate to COVID-
19 than women 1–3, yet the underlying biology remains largely unknown. Hypotheses pertaining to the
expression of viral entry protein, hormone levels, and immune systems are actively explored 4,5 and sex
steroid hormone drugs are being investigated in clinical trials (Estradiol: NCT04359329, Progesterone:
NCT04365127, Degarelix: NCT04397718). In a recent study, sex differences in immune responses in
COVID-19 were examined by Takahashi et al., where blood samples from female patients were found to
present more robust T-cell activation than male patients during SARS-CoV-2 infection 6. Comparing
samples from nasopharyngeal swabs, Lieberman et al. observed that male patients had reduced B cell-
speci�c and NK cell-speci�c transcripts and an increase in inhibition of nuclear factor kappa-B signaling
7.

 

SARS-CoV-2 engages the receptor ACE2 (angiotensin-converting enzyme 2) for entry into the target cell
through its spike protein 8. Its internalization requires priming of the spike protein by the cellular protease
TMPRSS2 (transmembrane protease, serine 2) in the host cell 9, thus co-expression of ACE2 and
TMPRSS2 on the target cell surface is required for virus entry. The high mortality in patients with COVID-
19 may be partially driven by the strong a�nity of the virus to ACE2 and the facilitation from TMPRSS2.
A few studies 10–12 analyzed gene expression of ACE2 and/or TMPRSS2 between sexes using bulk or
single-cell RNA-Seq samples primarily pro�led from healthy individuals. However, many of the
hospitalized COVID-19 patients have an underlying illness which increases mortality risks, and are in
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older age range (>60 years) 13. Furthermore, the number of patients in these studies 10–12 was relatively
small.

 

In this study, we address the question of sex differences in response to SARS-CoV-2 in three ways. First, in
order to quantify expression differences between sexes, we leverage public gene expression pro�les
covering a wide range of age, tissues, and disease conditions, and later utilize Electronic Medical Records
(EMR) to validate �ndings. We also harness the emerging COVID-19 patient gene expression pro�les to
characterize cellular response differences between sexes in the upper airway and blood. Lastly, we
investigated in vitro antiviral activity of sex steroid hormones in two cell lines infected by SARS-CoV-2.

 

Expression of ACE2 and TMPRSS2 in a diverse and comprehensive set of human samples

We �rst compiled three large independent expression datasets consisting of 220,835 samples from
diverse tissue types and patient populations (healthy and disease conditions) and completed their meta-
information, including sex, age group (younger: 0-19, middle: 20-59, and older: >60), and tissue of origin
(14 main tissues), through machine learning and manual annotation (Figure S1). To minimize batch
effects, all the samples in each dataset were pro�led under the same platform and processed using the
same pipeline. The �rst dataset was compiled from the Treehouse project (T), where 17,654 RNA-Seq
samples primarily from consortium projects including TCGA, GTEx, and TARGET were processed through
the Toil pipeline 14. The second dataset was downloaded from the ARCHS4 (A) project, where 60,936
human RNA-Seq samples pro�led under the Illumina HiSeq 2000 platform were aligned using Kallisto 15.
The last dataset was collected from the GEO (G), where 145,947 samples pro�led under the Affymetrix
GPL570 platform were processed using Robust Multi-array Average (RMA). The sex, age group, and
tissue of origin were obtained from the original resources (Methods); however, a substantial number of
samples had missing metadata, especially in sets A and G, where only 1,407 and 4,392 samples have all
sex, age, and tissue information, respectively. Leveraging their expression pro�les, we built machine
learning models (deep multi-task neural network and XGBoost) that completed metadata for the majority
of samples with high con�dence (Table S1). All of these predictions were further manually inspected
based on unstructured sample metainformation available in the source �les when possible.

 

Since both the proportion of samples with high expression of entry proteins and the absolute expression
value of these proteins within individual samples are important to understand sex differences, we
analyzed both categorical and continuous expression data. We �rst merged all three datasets into one
single matrix (referred to as the Merged dataset) consisting of 220,835 samples, after categorizing them
into high (e.g., top 10% within each dataset) and normal expression groups (i.e., ACE2 high vs. ACE2
normal, TMPRSS2 high vs. TMPRSS2 normal, and ACE2&TMPRSS2 high vs. ACE2&TMPRSS2 normal) in
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individual datasets. The Merged dataset, including diseased samples, healthy samples, and those
samples with the treatment of perturbgenes samples, might be one of the best resources to investigate
expression of entry proteins thus far. Similarly, we compiled a single matrix consisting of 8,066 healthy
samples from T (referred to as the Healthy dataset). Logistic regressions were applied to predict the high
expression group using age, tissue, and sex as features (by default, 95% con�dence interval (CI), female
as a reference). In addition to analyzing categorical expression data using the Merged dataset, we
compared absolute expression between sex groups for each dataset separately.

 

Table 1. Odds ratios of sex in the prediction of the high expression group in the Healthy dataset and in the
Merged dataset.  In the regression model, Y is the binary expression level of an entry protein, and X is sex
with female being the reference. The all age group is adjusted for age, tissue, and data source, and the
older group (>60 years) is adjusted for tissue and data source. *: p < 0.001 and #: 0.009.

   Samples in the Healthy dataset Samples in the Merged dataset

  all ages
(n=8,066)

>60 (n=2,849) all ages
(n=220,835)

>60 (n=37,911)

ACE2 1.06 [0.86-1.32] 1.02 [0.72-
1.44]

1.25 [1.19-1.30]* 1.15 [1.07-1.23]*

TMPRSS2 1.03 [0.85-1.27] 0.91 [0.65-
1.29]

1.28 [1.23-1.34]* 1.32 [1.24-1.42]*

ACE2 &
TMPRSS2

0.80 [0.52-1.24] 0.55 [0.27-
1.10]

1.16 [1.09-1.24]* 1.12 [1.03-
1.22]#

 

 

We did not observe any signi�cant difference in the proportion of highly expressed ACE2, TMPRSS2, or
ACE2&TMPRSS2 samples between women and men in the Heathy dataset after adjusting for age and
tissue (Table1). However, the proportion of highly expressed samples in men is larger than in women in
the Merged dataset (ACE2: OR 1.25 [1.19-1.30], P < 0.001; TMPRSS2: OR 1.28 [1.23-1.34], P < 0.001;
ACE2&TMPRSS2: OR 1.16 [1.09-1.24], P < 0.001) (Table 1). In the older group, proportion difference was
also observed in the Merged dataset (ACE2: OR 1.15 [1.07-1.23], P < 0.001; TMPRSS2: OR 1.32 [1.24-1.42],
P < 0.001; ACE2&TMPRSS2: OR 1.12 [1.03-1.22], P=0.009), but not in the Healthy dataset (Table 1). 
Neither ACE2 nor TMPRSS2 is highly expressed in the majority of samples, while both are indeed highly
expressed in a considerable number of samples in both men and women suggested by the long tails in
both G and A, but not in T (normal) (Figure 1A). Compared to the younger group (0-19), the older group
(>60) has a larger difference of ACE2 expression between males and females (G: M/F 1.11 [1.1-1.12], P <
0.001 in older vs. M/F 0.99 [0.98-0.99], P < 0.001 in younger) (Figure 1A) as well as TMPRSS2 expression
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(G: M/F 1.04 [1.03-1.04], P < 0.001 in older vs. M/F 1.0 [0.99-1.0], P=0.58 in younger) (Figure S2A). Further
analysis of additional disease samples with the highest expression of ACE2 revealed that Crohn’s
disease, ulcerative colitis, Barrett’s esophagus, trachoma, and ichthyosis have overall higher ACE2
expression in disease samples compared to control (Student’s t-test, P < 0.05, Figure S3). The difference
of ACE2 expression between sexes in these disease samples was not observed, likely due to the small
sample size for each disease. In summary, although expression difference of entry proteins between
sexes was not observed in the Healthy dataset, higher ACE2 expression was found in men, especially in
older men, in the Merged dataset.

 

 

Next we investigated whether there are expression differences in individual tissues. Perhaps because of
the wide coverage of samples in A and G, expression of ACE2 has a larger variation in both datasets than
in the Healthy dataset T, especially in the kidney, small intestine, heart, liver, and colon (Figure 1B), while a
large variation exists in the expression of TMPRSS2 in the kidney, small intestine, liver, colon, lung,
pancreas, and prostate (Figure S2B). ACE2 is not differentially expressed between sexes in the lung (OR:
0.9 [0.78-1.04], P > 0.001), and women have even lower TMPRSS2 expression in the lung in the Merged
dataset [OR: 0.71(0.64-0.78), P < 0.001] (Table S2). Notably, the kidney is the only tissue showing a
remarkable difference in ACE2 expression between sexes in both A and G (Figure 1B). After adjusting for
age and data source, the OR is 1.45 [1.26-1.67] (P < 0.001) (Table S2). The kidney is also the only tissue
showing a signi�cant difference in TMPRSS2 expression between sexes in both A and G (Figure S2B). We
were able to further map 28% of those samples with high ACE2 expression to their diseases based on
sample metainformation. The top mapped diseases are clear cell/renal cell carcinoma (60.8%), renal
interstitial �brosis (9.1%), acute kidney injury (7.5%), glomerulosclerosis (6.7%), nephritis (4.3%), and
nephropathy (2.6%). In addition, as steroid hormone receptors regulate the renin-angiotensin-aldosterone-
system, where ACE2 is an essential component 16, we examined the expression relationship between
ACE2 and steroid hormone receptors. ACE2 expression has a higher correlation with AR expression
(Androgen Receptor, Spearman Rho: 0.72, P < 0.001) than with ESR1 expression (Estrogen Receptor 1,
Rho: 0.19, P < 0.001), ESR2 expression (Estrogen Receptor 2, Rho: -0.12, P < 0.001), and PGR expression
(Progesterone Receptor, Rho: 0.26, P < 0.001) in the kidney (Figure S4A). The genes regulated by AR also
highly overlap with the genes positively co-expressed with ACE2 in the healthy adrenal gland (P = 3.08E-5,
Figure S4B), suggesting that ACE2 expression might be associated with androgen receptor activity in the
kidney.

 

In order to �nd clinical evidence of these �ndings, we analyzed 6,031 COVID-19 patients (4,621 inpatients
and 1,410 outpatients with available labs) for serum creatinine levels measured in �ve member hospitals
at Mount Sinai Health System up to May 10, 2020. We observed that men have signi�cantly higher serum
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creatinine levels than women after normalizing to sex-speci�c reference ranges and adjusting for age and
race (Inpatients OR: 1.89 [1.66-2.15], P < 0.001; Outpatients OR 2.12 [1.68-2.66], P < 0.001) (Extended
Data), indicating COVID-19 male patients are most likely to have kidney dysfunction than female
patients. Whereas, both expression and clinical data analysis suggest that sex difference in the kidney is
not speci�c to the older group (Table S2 and Extended Data). Recent studies reported that acute kidney
injury is common in patients hospitalized with COVID-19 and is associated with increased mortality 17,18.
Together, the expression difference of entry proteins in kidney between sexes might be a factor
contributing to sex differences in COVID-19 susceptibility.

 

Sex strati�ed analysis of host responses to SARS-CoV-2

We searched GEO and SRA to obtain COVID-19 patient RNA-Seq samples and reprocessed raw sequence
data when possible. We compiled four datasets with gender information (one from upper airway
nasopharyngeal, one from upper airway naso/oro-pharyngeal, one from blood PBMC, and one from blood
leukocytes), totaling 782 samples (Table S4). In each dataset, the ratio of the number of samples
between sexes is close to 1. For each large upper airway dataset, we strati�ed samples into an older age
group (>60 years) and a middle age group (20-60 years). We enumerated all the possible comparisons for
each dataset (i.e., female control vs. female patient, male control vs. male patient, female control vs. male
control, and female patient vs. male patient), with each comparison using the same thresholds to select
differentially expressed genes. In comparing female and male samples either in the control group or in
the COVID-19 group, only a few sex-speci�c genes were dysregulated between women and men. However,
expression of a vast number of genes was signi�cantly changed (p < 0.001, absolute fold change > 2)
between healthy patients and COVID-19 patients in either men or women (e.g., 4269 DE in female CT vs.
SARS2 and 911 DE in male CT vs. SARS2 in middle age group; 627 DE in female CT vs. SARS2 and 29 DE
in male CT vs. SARS2 in older age group in GSE152075) (Figure 2 A-F). Interestingly, such changes seem
unique to each sex with only a small portion of DE genes shared by both sexes. The two datasets from
blood show the largest number of shared DE genes (35.7% and 30.8%, Figure 2E, 2F), while the dataset
from older male upper airway has the lowest number of shared DE genes (0.1%, Figure 2B). The lower
number is likely because fewer genes were differentially expressed in older male upper airways after
SARS-CoV-2 infection Female patients presented very distinct gene expression changes in all datasets,
especially in the younger group (Figure 2A, 2C). Pathway enrichment analysis of these distinct DE genes
con�rmed the immune response differences (cytokinin mediated signaling, cellular response to interferon-
gamma and interferon 1) as previously reported 6,7; however, a few other non-immune related pathways
were enriched in female patients, including down-regulation of mitochondrial respiratory responses and
regulation of cholesterol biosynthesis (Figure 2 G-I). The younger male group presented the
downregulation of various immune responses such as humoral immune response, acute in�ammatory
response, and Fc- gamma signaling pathways (Figure 2G), but no enriched pathways were observed in
older male COVID-19 patients. Together with the higher susceptibility in older men, the analysis suggests
that men and women have distinct host cellular responses in addition to immune responses. Importantly,
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out dataset suggests that weak host responses in the upper airway could be one indicator of
susceptibility.

 

We further inferred the enrichment of 64 cell types in COVID leucocytes samples using Xcell 19 and
compared cell type enrichment. In both men and women, CD8+ T-cells and memory CD8 T Cell were
suppressed in COVID ICU patients (Figure S5). NK cells were suppressed in male ICU patients while
neutrophils were elevated in female ICU patients. One striking difference between men and women came
from the enrichment of mesangial cells, a kidney-speci�c cell type (control vs. COVID: male p-value of 1E-
7 and female p-value of 1E-1, Student’s t-test). Logistic regression analysis of enrichment of mesangial
cells with disease severity (non-ICU vs. ICU) indicated patients with higher enrichment of mesangial cells
are more likely admitted into ICU [OR: 3.2(1.6-8.3), P < 0.001] (adjusted for age, Supplementary Figure S5).
Together with the higher expression of ACE2 and higher creatine levels in men, this analysis implies that
impaired kidney function could be one source of sex differences.

 

 

Responses to sex steroid hormone treatment

The difference in sex hormone levels between sexes might contribute to disease susceptibility; however,
to establish the connection requires the development of robust SARS-CoV-2 animal models or the launch
of clinical trials, either of which could not be accomplished soon. Therefore, we sought to understand
how infected cells respond to the treatment of hormones in vitro, including estrogens, progesterone, and
androgens. We �rst evaluated the anti-SARS-CoV-2 activity of estradiol (estrogen receptor agonist),
fulvestrant (estrogen receptor antagonist), danazol (androgen receptor agonist), bicalutamide (androgen
receptor antagonist), and hydroxyprogesterone caproate (OHPC, progesterone receptor agonist) in Vero
and Calu-3 cells (Table 2, Figure S6). Among these drugs, only OHPC was effective in cells challenged
with SARS-CoV-2 (IC50 13 µM in Vero and 6.4 µM in Calu-3). A previous study validated progesterone in
vitro and proposed it might act through targeting sigma receptors, the inhibitors of which displayed
antiviral activity in vitro 20. Thus, we evaluated an additional progesterone receptor agonist desogestrel
and did not observe the e�cacy (IC50 > 50 µM). Similarly, in an independent screening effort from the
NCATS OpenData Portal project, three progesterone receptor agonists (desogestrel, chlormadinone
acetate, and danazol) showed weak anti-cytopathic effect activity (20 µM) 21. This suggested that the
potential protective effect of progesterone might come from its off-target effect on sigma receptors. We
further surveyed the activity of 62 steroid and non-steroid hormones drugs through literature search and
querying of large-scale screening databases including NCATS OpenData Portal, and con�rmed that ER
agonists, ER antagonists, AR agonists, AR antagonists, and PR agonists generally did not present in vitro
anti-SARS-CoV-2 activity, except diethylstilbestrol, a non-steroid ER agonist (with IC50 of 4.5 µM)



Page 9/19

(Extended Data). However, six out of eight selective estrogen receptor modulators (SERM) showed
considerable activity (IC50: 3.4-12 µM). SERM also presented anti-EBOV activity in previous screening
efforts, and their activity appeared to be an off-target effect 22,23.  Together, the role of hormones in
antiviral activity is still inconclusive; however, our data are hopeful to incite deeper investigation of its
effect in vivo or in the clinic.

 

Table 2: In vitro anti-SARS-CoV-2 e�cacy of steroid sex hormone drugs. The IC50s in Vero and Calu-3 cells
were summarized from dose-response curves (Figure S6).  The IC50s of SERMs (Selective Estrogen
Receptor Modulators) were collected from published studies (Extended Data).

Drug Drug class Vero
(uM)

Calu-3
(uM)

Other studies
(uM)

Estradiol Estrogen receptor

agonist

>50 27.3

 

 

Fulvestrant Estrogen receptor

antagonist

>50 >50  

Danazol Androgen receptor agonist >50 25.6  

Bicalutamide Androgen receptor
antagonist

>50 >50  

Hydroxyprogesterone

caproate

Progesterone receptor
agonist

13.0

 

6.4

 

 

Desogestrel Progesterone receptor
agonist

>50 >50  

Bazedoxifene SERM NA NA 3.4 24

Droloxifene SERM NA NA 6.6 24

Ospemifene SERM NA NA 12.6 21

Raloxifene
hydrochloride

SERM NA NA 2.2 21

 

Tamoxifen SERM NA NA 9.0 25

Toremifene SERM NA NA 11.3 25

Discussion
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COVID-19-related death is mainly associated with being male, older age, and comorbidities 26. The virus
�rst enters the nose and throat, and then travels down to attack lung, which likely causes substantial
respiratory pathology including acute respiratory distress syndrome. Its reach can extend to many other
organs like blood vessels, liver, kidney, heart, and brain 27. ACE2 and its partner proteins are the key
facilitators of virus entry into different organs. Therefore, their expression levels could be associated with
disease severity and further mortality, and their expression differences between sexes could partially
explain the higher mortality in men. Previous efforts did not detect the difference 10,11, likely because only
healthy tissues were examined. In our Healthy dataset, we did not observe the difference either. Therefore,
a comprehensive dataset covering a wide range of tissue samples including diseased samples is
necessary to solve the puzzle. In order to draw robust conclusions, we utilized two large independent
datasets based on distinct technologies: microarray and RNA-Seq. In addition, we examined the
differences according to the percentage of highly expressed samples and the absolute expression values.
Regardless of datasets and analytic methods, we found that men have higher ACE2 and TMPRSS2
expression, which likely contributes to the sex difference in COVID-19 susceptibility.  While inspecting
individual organs, the kidney is among the top tissues with high expression of ACE2 and TMPRSS2, and
is the only tissue showing expression difference of ACE2 and TMPRSS2 in both datasets. We noted that
ACE2 expression presented a clear bimodal distribution in dataset G, but not in dataset A. This is because
we removed samples with undetected expression in RNA-Seq processing (TPM < 0.5, datasets G and T)
while kept all samples pro�led in microarray processing (dataset A). Further inspection of these samples
revealed a cluster of normal kidney samples has a lower expression of ACE2. When we kept the samples
with higher expression of ACE2 (microarray expression > 5) in G, we still observed higher expression of
ACE2 in men. Subsequent computational cell type enrichment analysis revealed that kidney mesangial
cells are detected only in male COVID-19 patients’ blood and the creatinine levels are higher in male
COVID-19 patients than in female COVID-19 patients. Because kidney disease is an important indicator of
in-hospital mortality, we reasoned that the kidney is likely an organ accounting for sex differences in
COVID-19, and the expression of ACE2 might be a factor.

 

An additional difference resulted from host responses after the infection of SARS-CoV-2. In addition to
reported immune response differences, we found vast differences in non-immune cells such as
mitochondria functions, phagocytosis, and cholesterol biosynthesis, suggesting men and women have
unique response trajectories after infection and latency. Of note, independent of sex, younger people
(<=60) have much more differentially expressed genes than older people (>60); independent of age,
women tend to have more differentially expressed genes than men. In both upper airway datasets, the
subtle difference of host response between older male COVID-19 patients and older male healthy
individuals might suggest the weakening responses to viral infection with increasing age, although the
causal relation between host responses and disease susceptibility needs further exploration.
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Hormone levels are an additional pillar of sex differences, although the difference in sex hormone effect
is subtle in older people. Neither agonists nor antagonists of two hormone receptors ESR and AR
displayed any activity against SARS-CoV-2 infection. One progesterone receptor agonist OHPC showed
some activity, but another agonist desogestrel did not, suggesting OHPC may act through an off-target
effect. One study demonstrates the e�cacy of a group of sigma receptor inhibitors including OHPC
against SARS-CoV-2 in vitro 20. Interestingly, a group of SERMs, acting as agonists, antagonists, or a mix
of agonists and antagonists, exerted considerable activity in vitro. Prior studies found one SERM,
toremifene, destabilizes a glycoprotein preventing fusion between the viral and endosome membranes in
EBOVs 22. Our in vitro data showed neither increasing nor decreasing steroid hormone concentrations of
estrogen, androgen, or progesterone exerted antiviral activity; however, it does not exclude the possibility
of their bene�ts through other mechanisms such as anti-in�ammatory 28.

 

Our work has the following limitations. First, in the quantitative analysis of ACE2 differences, the batch
effect between studies, variations among the three datasets, and other unknown confounding effects do
exist; however, the main conclusions are robust, as we compared the samples that were produced using
the same platform and processed under the same pipeline, used three relatively large independent
datasets, and analyzed both categorical and continuous data. Second, when studying cell composition of
bulk COVID-19 patient samples, although the computational tool Xcell we employed has been widely
used, the exact cell fractions could be quanti�ed more precisely using single-cell technologies.
Furthermore, because of heterogeneous cell compositions in the samples, the DE genes might primarily
re�ect the difference of various cell types rather than that within infected cells. Lastly, the effect of sex
hormone drugs ideally should be investigated in animal models or preferably in the clinic. The launched
clinical trials are expected to provide more evidence soon. Nevertheless, our analysis of an extensive
genomic, clinical, and drug-screening data quantitatively depicts sex differences in COVID-19 from three
aspects.

Methods
Data collection

Treehouse OCTAD (T): We downloaded the processed TPM data and phenotype data from the Treehouse
project 14. We used the same pipeline TOIL to process additional samples and integrated them into a
single dataset OCTAD 29. This dataset has been used for drug repositioning. In this work, we took the
subset of OCTAD where samples have tissue, sex, and age information. The subset includes samples
from healthy normal, primary cancer, and adjacent normal tissue samples. This dataset has complete
information of sex and age, as well as a fairly complete annotation of tissues. In Figure 1, we only
analyzed healthy normal (GTEx) and adjacent normal samples (TCGA). Although healthy normal
samples include some diseased patients and some samples are mixed with cancer cells, it remains the
best resource for normal tissue samples.
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ARCHS4 GPL11154 (A): We downloaded transcript TPM data from the ARCHS4 project which
harmonized RNA-Seq sequence data from HiSeq 2000, HiSeq 2500, and NextSeq 500 platforms for
human experiments from GEO and SRA.  Reads were aligned with Kallisto using a custom cloud
computing platform. Human samples were aligned against the GRCh38 human reference genome. The
integrated expressions allowed comparing gene expression across tissues in ARCHS4. The
metainformation of these samples was downloaded from ARCHS4, and regular expression pattern
matching was employed to assist in tissue and age labeling. Only high con�dence predictions of tissue
and age were considered as labeled data for building machine learning models. We observed a large
variation of expression among the three platforms; to facilitate subsequent analysis, we decided to
choose HiSeq 200, which is the earliest and most commonly used platform. We drew similar conclusions
from the other two platforms, which were not included in the analysis.

 

GEO GPL570 (G): GPL570 is the most popular microarray platform. CEL �les from the GPL570 platform
were downloaded using GEOquery. A total of 165 corrupted CEL �les were removed from the analysis.
Due to size and computational resources, GPL570 was divided into 42 batches (Average: 3477 CELs per
batch). Each batch was then normalized with the Affy package using RMA. Selected batches were
normalized with justRMA to maintain large batch size. Median was used to merge expression of multiple
probes. We included all the samples pro�led under this platform. The dataset covers human tissue
sample, cultured human cell samples, and those treated with various perturbagens. In order to perform
unbiased analysis, we did not exclude cell line samples frequently used at the bench. Sample metadata
such as title, source name, and characteristics were pulled out from GEOmetadb.

 

Meta-data curation and imputation

For Treehouse OCTAD (T), since sex and age information were relatively complete, we used only labeled
data to perform the analysis, which also served as a reference for other datasets. For ARCHS4 GPL11154
(A) and GEO GPL570 (G), only less than 1/3 samples were labeled (Table S1). For samples taken from
sex-speci�c tissues such as prostate and testis, we manually imputed their sex as male. However, the
missing rate was still high after this process. Therefore, we further utilized state-of-the-art machine
learning models to impute missing labels. Given a dataset, for each target of interest, i.e., sex, age, or
tissue, we extracted the gene expression of target-speci�c (enriched) genes 30,31 for all the samples and
used labeled data to build a prediction model. For sex and tissue, we built a multi-task deep neural
network 32 (Figure S7) to predict them together since sex and some tissues are dependent on each other
(e.g., only males have prostate/testis samples while breast samples are more likely from females;
building models independently for sex and tissue may result in futile predictions such as female-testis).
For age prediction, when adding age prediction into a multi-task learning framework, sex and tissue tasks
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were dominant over age prediction which yielded unsatisfactory results. Therefore, we treated age
prediction as a single task and used the extreme gradient boosting (XGBoost) 33 to build the model. All
the hyper-parameters were tuned using 5-fold cross-validation and the detailed experiment settings can
be found in Supplementary Text. After the classi�ers were built, we applied it to unlabeled data and
predicted their labels. Only predictions with high con�dence were kept for later use. For sex, we
considered prediction with probability of <0.1 (female) and >0.9 (male) as con�dent. For multi-class
targets (age: 3 classes; tissue: 14 classes), we considered class probability > 0.6 as con�dent. After that,
human inspections were also involved to correct the potentially mislabeled samples based on the
characteristics of each sample from the raw source �le. Age prediction using gene expression data
remains challenging, especially with the context of disease states, so we only predicted three age groups
(0-19, 20-59, and >60). We observed that ages 40s and 50s are more likely to be misclassi�ed. In the
analysis, we only chose highly con�dent predictions and focused on the comparison of the younger and
older group. In summary, we explored multiple options to ensure that each step produces optimal results.
The complete labeled percentage for sex, age, and tissue before and after imputation can be found in
Table S1. The model accuracy for all the tasks across all datasets can be found in Table S3, and the
visualizations for learned representations are shown in Figure S8.

 

Clinical data analysis

Using the Mount Sinai Data Warehouse, we compiled de-identi�ed electronic medical records (EMR) data
including age, sex, race, and creatinine levels for inpatients and outpatients con�rmed with COVID-19 at
Mount Sinai Health System up to 05/10/2020. We normalized the creatinine levels by using x/1.2 for
males and x/1.1 for females (x was the creatinine level of the corresponding patient) since the reference
range for males is 0.6~1.2 mg/dL and for females is 0.5~1.1 mg/dL.  For logistic regression, we set the
normalized creatinine > 1 as 1 for both in- and outpatients. In logistic regression, we set sex-female and
race-white as the reference. Patient summary statistics can be found in Extended Data and more
characteristics of the patients were reported elsewhere 34,35.

 

Statistics and data analysis

For the comparison of sex differences in the proportion of samples with high expression of virus entry
proteins, we employed logistic regression with the adjustment of age, tissue, and data source whenever
possible. Since smoking status is emerging as an inconclusive factor accounting for sex differences in
COVID-19, we adjusted smoking status in a small set (non- smoker: 859, smoker: 1,542), and found men
still have higher ACE2 expression than women (data not shown). Because of the limited size, we did not
include smoking status in the main analysis.  In tissue analysis, we chose 14 main tissues based on their
sample counts and their importance; unknown refers to samples either belonging to other tissues or with
low-con�dence tissue prediction.
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The expression of virus entry proteins is not normally distributed across samples: a majority of them with
undetectable expression (TPM < 0.5), and a considerable number of samples with high expression of
these entry proteins.  We chose the top 10% most highly expressed samples as the high group (label 1)
and the remaining as the normal group (label 0). We also explored the thresholds 75%, 80%, 85%, and
95% (the TPM is less than 0.5 at the threshold of 75%). There are variations of ORs among these
thresholds, but the conclusions did not change (Figure S9). Such grouping enabled the incorporation of
three datasets, the inclusion of samples with undetectable expression, and the mitigation of batch effect
between studies. In addition, we applied a similar analysis to individual studies (i.e., GEO GSEs)
(Supplementary Text).

 

The sex difference in continuous gene expression of target genes was evaluated by two metrics: the ratio
of average gene expression between female and male groups and the difference of median gene
expression between female and male groups. The 95% CI of ratio estimate between female and male
groups is obtained by bootstrapping: sampling with replacement and calculating the ratio of average
gene expression between female and male for 1000 times, with 2.5% and 97.5% quantile recorded. The
difference of median gene expression between women and men is computed using a two-sided Wilcoxon
rank-sum test with 95% CI and p-value reported. Since low abundance genes in RNA-Seq samples (TPM <
0.5) are often noisy, these samples were removed accordingly in Figure 1 and Figure S2.

 

COVID-19 patient sample processing

We searched GEO and SRA using keywords “COVID” and “SARS-CoV-2” and chose those datasets with >3
samples in each sex group (e.g., male healthy, male COVID). We ended with four datasets in the following
analysis (Table S4). Two datasets were from upper airways, one dataset was from PMBC and one was
from leucocytes. The dataset from leucocytes includes patient severity (ICU vs. non-ICU). Reprocessed
raw sequence data available at SRA were downloaded and mapped to the human Hg38 transcriptome
using the ENSEMBL GRCh38.p3 annotation using STAR aligner (https://github.com/alexdobin/STAR).
The read count mapped on transcriptome was used for DE analysis. All possible comparisons between
male and female samples (female-CT vs. male-CT, female-SARS-Cov2 vs. male-SARS-cov2, female-CT vs.
female-SARS-Cov2, and male-CT vs. male-SARS-Cov20) were performed. The absolute log2foldchange
>=1 with a false discovery rate < 0.01 computed from the EdgeR 36 package was chosen to identify DE
genes. The DE genes of these comparisons were further compared via vennDiagram R package to �nd
out common genes and speci�c genes for each comparison. Furthermore, DE genes speci�c to Control
vs. SARS-cov2 in male and Control vs. SARS-cov2 in female were applied to identify enriched pathways
through the enrichR API 37. The sequence alignment, DE computation, and pathway enrichment were
implemented in the OCTAD package 29. XCell was employed to infer cell composition 19.  
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In vitro drug testing

Virus and Cells

Vero cells were obtained from the American Type Culture Collection (ATCC CCL-81; Manassas, VA, USA)
and maintained at 37°C with 5% CO2 in Dulbecco’s Modi�ed Eagle’s Medium (DMEM; Welgene,
Gyeongsan, Republic of Korea), supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
1X Antibiotic-Antimycotic solution (Gibco/Thermo Fisher Scienti�c, Waltham, MA, USA).  Calu-3 used in
this study is a clonal isolate, which shows higher growth rate compared to the parental Calu-3 obtained
from the American Type Culture Collection (ATCC CCL-81). Calu-3 was maintained at 37°C with 5% CO2 in
Eagle’s Minimum Essential Medium (EMEM, ATCC), supplemented with 20% heat-inactivated fetal bovine
serum (FBS), 1X MEM-NEAA (Gibco) and 1X Antibiotic-Antimycotic solution (Gibco). SARS-CoV-2
(βCoV/KOR/KCDC03/2020) was provided by Korea Centers for Disease Control and Prevention (KCDC),
and was propagated in Vero cells. Viral titers were determined by plaque assays in Vero cells. All
experiments using SARS-CoV-2 were performed at Institut Pasteur Korea in compliance with the
guidelines of the KNIH, using enhanced Biosafety Level 3 (BSL-3) containment procedures in laboratories
approved for use by the KCDC.

 

Reagents

All compounds were purchased from MedChemExpress (Monmouth Junction, NJ), and dissolved in
DMSO. Anti-SARS-CoV-2 N protein antibody was purchased from Sino Biological Inc. (Beijing, China).
Alexa Fluor 488 goat anti-rabbit IgG (H + L) secondary antibody and Hoechst 33342 were purchased from
Molecular Probes. Paraformaldehyde (PFA) (32% aqueous solution) and normal goat serum were
purchased from Electron Microscopy Sciences (Hat�eld, PA) and Vector Laboratories, Inc. (Burlingame,
CA), respectively.

 

Dose-response curve (DRC) analysis by immuno�uorescence

Ten-point DRCs were generated for each drug. Vero cells were seeded at 1.2 × 104 cells per well in DMEM,
supplemented with 2% FBS and 1X Antibiotic-Antimycotic solution (Gibco/Thermo Fisher Scienti�c).
Calu-3 cells were seeded at 2.0 × 104 cells per well in EMEM, supplemented with 20% FBS, 1X MEM-NEAA
(Gibco) and 1X Antibiotic-Antimycotic solution (Gibco) in black, 384-well, μClear plates (Greiner Bio-One),
24 h prior to the experiment. Ten-point DRCs were generated, with compound concentrations ranging
from 0.1-50 μM. For viral infection, plates were transferred into the BSL-3 containment facility and SARS-
CoV-2 was added at a multiplicity of infection (MOI) of 0.05 or 0.1 for Vero and Calu-3 cells, respectively.
The cells were �xed at 24 hpi with 4% PFA and analyzed by immuno�uorescence. The acquired images
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were analyzed using in-house software to quantify cell numbers and infection ratios, and antiviral activity
was normalized to positive (mock) and negative (0.5% DMSO) controls in each assay plate. DRCs were
generated in Prism7 (GraphPad) software, with Dose-response-inhibition nonlinear regression analysis.
IC50 and CC50 values were obtained with the identical analysis method. Mean values of independent
duplicate experiments were used for analysis. Each assay was controlled by Z'-factor and the coe�cient
of variation in percent (%CV).
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